
A Survey of Three Proposed Techniques
to Increase the Security of Java

COMPSCI725 Term Paper 2003

Qing-Shan Martin Lun

Abstract

The Java platform was designed from the outset to implement security as a default

feature. However, the security of Java is lacking in several areas, including object

encapsulation and ease of decompilation of bytecode. This paper introduces, explains

and comments on the techniques proposed by three separate papers which address

these security issues. The papers are: “Confined types” by Bokowski and Vitek;

“Using class decompilers to facilitate the security of Java applications” by Tam and

Gupta; “Automatic detection of immutable fields in Java” by Porat et al.

1 Introduction

The Java programming language represents one of the few computer languages

designed from the outset to implement security features into its platform as a default

feature. Despite this (or perhaps because of it), several extensions to its security

mechanisms have been proposed. This paper introduces, explains and discusses the

techniques described in three papers: “Confined types” by Bokowski and Vitek in

1999 [1]; “Using class decompilers to facilitate the security of Java applications” by

Tam and Gupta, published in 2002 [3] and “Automatic detection of immutable fields

in Java” by Porat, Biberstein, Koved and Mendelson in 2000 [2].

The three studied papers propose several differing approaches to extending Java ’s

security features. In [1], the authors present a syntactical addition to the Java

language to eliminate the leaking of references to sensitive objects to insecure or

untrusted code. Porat et al in [2] present a system to detect mutable and immutable

fields and classes in Java code to enable programmers to easily see where possible

security risks may lie (amongst other purposes). Finally, in [3], Tam and Gupta

present a system named “REVEAL” which combines Java decompilers and

obfuscators in a feedback mechanism to allow developers to more easily and

effectively produce hard-to-decompile Java bytecodes.

In section 2 of this paper the proposed extensions described in [1, 2, 3] will be

explained. In section 3, pertinent points from the papers’ discussion and conclusions

will be presented, the solutions introduced in each paper will be compared and

independent discussion will be put forth. Finally, in section 4 the paper will be

concluded with a summary of the ideas presented.

2 Proposed extensions

2.1 “Confined Types”

In their paper “Confined types”, Vitek and Bokowski propose two additions to the

Java programming language intended to eliminate the problem of untrusted code

gaining use of or access to sensitive code. The authors describe the problem as one

that is present in all object oriented languages – if a program contains references to

“secure” objects, it is possible, without careful design and debugging, to leak these

references to the outside world either directly or indirectly. An example of the

problem leading to a real security breach in the JDK 1.1.1 implementation was

presented (reproduced from [1] in figure 2.1a). [1]

private Identity[] signers;
…
public Identity[] getSigners() {
 return signers;
}

Figure 2.1a – An example reproduced from figure 1 in [1], showing a code
fragment from the JDK 1.1.1 implementation that exhibits a security breach
due to the getSigners() method exposing a reference to an internal array of
“secure”, Identity objects. The breach can be eliminated by using Vitek and
Bokowski’s confined types.

The above example shows a fragment of code that exposes a reference to an internal

array of Identity objects (an Identity contains information about who has access rights

to a class at runtime). The method getSigners() was deliberately made public to allow

any Java applet to discover information about all the principles (defined in [1] as

“entities whose actions must be controlled”) known to the system. However, as the

information was returned as a reference to the original array, malicious code was able

to take advantage of the array’s mutable nature add Identities at will – giving it access

rights it should not be able to have. [1]

The authors of “Confined types” give an obvious solution to the problem without

adding any additional language constructs – simply returning a shallow copy of the

signers array instead of a reference of the internal array itself eliminates the problem.

However, Vitek and Bokowski note that there is nothing in the Java language itself

that could prevent a similar situation occurring elsewhere. As an answer to this

observation, they present two new language constructs that can be used to eliminate

the problem: confined types and anonymous methods. [1]

The constructs come in the form of two syntactic additions to the Java language; the

keywords confined and anon. In the case of the former, by placing “confined” before

a class declaration the programmer is able to sign the class as one which must not

have any references to any instances of it exposed to code outside of its package. By

doing this, source code can be statically checked at compile time to verify that no

such marked class instances can be accessed by untrusted code. An example solution

to the Identity problem using this construct is shown in figure 2.1b (as reproduced

from [1]). [1]

By wrapping each SecureIdentity in the signers array in an Identity object (that

defines only the public operations that can be performed on a SecureIdentity), the

private data can be securely encapsulated. This is nothing special in itself – such a

result can be achieved using standard Java – however, by marking the SecureIdentity

class as confined, a full analysis can be made at compile time to verify that no

references to the confined objects are exposed outside of the package. [1]

Vitek and Bokowski recognise that marking classes as confined is not enough to

secure packages from reference leakage. In the case where a confined class inherits

from an unconfined base class for example (in [1]’s model, Object is intrinsically

unconfined), one might be able to downcast SecureIdentity to Object and pass a

reference to an instance outside of the secure package. Though this could be

confined class SecureIdentity … {
 …
 // the original Identity implementation
 …
}

public class Identity {
 SecureIdentity target;
 Identity(SecureIdentity t) { target = t; }
 …// public operations on identities;
}

private SecureIdentity[] signers;
…
public Identity[] getSigners() {
 Identity[] pub;
 pub = new Identity[signers.length];
 for (int i=0; i<signers.length; i++)
 pub[i] = new Identity(signers[i]);
 return pub;
}

Figure 2.1b – An example reproduced from figure 3 in [1], showing a solution
to the problem demonstrated in figure 2.1a. The getSigners() method wraps
each SecureIdentity in a new Identity object before returning them. That a
SecureIdentity is not being returned directly is checked at compile time
through the used of the confined keyword.

eliminated with dynamic checking, the authors constrained their solution to involve

only static checking, thus; a further syntactic addition, the keyword anon was

introduced. Vitek and Bokowski define an anonymous method to be one “that does

not depend on the identity of the current instance to computer its value” [1].

By declaring a method as anon, the programmer states that the method can only use

the reference “this” for “accessing fields and calling anonymous methods of the

current instance” [1]. By restricting a method this way, one can guarantee at compile

time that a method is not able to do anything that might break the security of a

confined class.

2.2 “Automatic Detection of Immutable Fields in Java”

Porat et al in their paper “Automatic detection of immutable fields in Java” present an

algorithm designed to detect the mutability of fields and classes in Java code. The

algorithm runs statically (not at the run time of the code being tested) and can be used

to test the mutability of any Java component. [2]

The algorithm described in [2] offers a possible solution to security breaches similar

in nature to the example from [1] shown in figures 2.1a and 2.1b of this paper. In fact,

Porat et al mention the same example as a possible usage of their algorithm,

referencing the original article describing the security flaw [4]. By identifying

variables that could be potentially be modified, their algorithm could be used by

programmers to identify portions of Java code that could be vulnerable to attack, and

allow them to rectify the problem by making the constructs in question immutable.

The algorithm was implemented in the form of a tool called “The Mutability

Analyzer”. The authors evaluated their tool by running it with the Java 2 JDK runtime

library (rt.jar) – containing 4329 classes and 35999 methods – as input. They

compared their results against the results produced by a reflection based tool, and

found that the Mutability Analyzer identified approximately double the amount of

immutable fields compared to the reflection based tool. The authors attribute this to

their algorithm’s ability to taken into account various “runtime accessibility

constraints”. [2]

2.3 “Using class decompilers to facilitate the security of Java applications”

Tam and Gupta in their paper “Using class decompilers to facilitate the security of

Java applications” present a prototype system which integrates Java decompilers and

obfuscators into a single application. The authors recognise the security risk presented

by the standardised bytecode formats used to store compile Java applications and

applets. Because of this, there are many decompilers available that are extremely

effective at restoring readable source code from compiled Java bytecode. This poses a

serious security risk as it allows attackers to do such things as reverse engineer the

application or examine the source code and search it for security holes. [3]

Traditionally, a programmer requiring a hard to decompile Java application would use

an obfuscator on the source code before compiling it – reducing fields and names to

hard to read strings of characters – so when decompiled a human would have a

difficult time interpreting the source. Tam and Gupta propose the use of their

application “REVEAL” to allow interactive decompilation and obfuscation of Java

applications. Their approach links the decompiler and obfuscator in a controlled

feedback loop – the user is able to decompile bytecode, obfuscate it and decompile it

again ad infinitum – with a library of different decompilers and obfuscators to see

which produce the best results. Furthermore, REVEAL does not require the original

source code to operate on, as it can be obtained by its built- in decompiler library.

Figure 2.3a below (reproduced from [3]) shows the structure of REVEAL.

3 Discussion

In “Confined types”, although the two syntactic additions presented seem simple at

first glance, when considered more deeply their implementation requires much

additional thought. In an OO language such as Java several different situations in

which the new syntax could be used must be considered – for example inheritance,

composition and other forms of code reuse. Vitek and Bokowski discuss extensively

several different circumstances in which security could be breached, and show how

the combination of confined types and anonymous methods avoids these problems.

They provide detailed discussion of the rules that must be implemented by a compiler

to correctly implement their solution. [1]

They identify two major weaknesses – that their solution defines a only flat protection

model and that it can severely limit genericity. The first weakness is apparent in that

only objects within a package can be protected; which may not be flexible enough for

Figure 2.3a – (reproduced from [3], page 155) The structure of the REVEAL
system. A compiled Java application (applet) is input into a decompiler and
after user examination of various visualisations (bytecode viewer, class
hierarchy and call graph plotter) can be obfuscated. The process can be
repeated until an acceptable obfuscation method is found.

some applications. They suggest use of protection domains to solve this problem –

moving protection from the package level to named domains that contain a list of

classes to be protected. The second weakness, that confined types limits genericity is

of special interest because Java does not (as of 2003 (J2SDK 1.4) and the time of

writing of [1]) support parameterised types. Because of this limitation, in order to

store objects in a collection in Java one usually widens one’s objects to class Object,

and inserts them in a Collection class. As this is forbidden in many cases under the

system presented in [1], custom wrapper Collection classes would required to be

implemented, severely complicating user code. [1]

In “Automatic detection of immutable fields in Java”, Porat et al note the advantages

of their Mutability Analyzer application over the reflection based method. Firstly, and

importantly, the Mutability Analyzer outputs the location of code found to potentially

mutate objects. The authors state that this is important to allow developers to use the

information to modify their code to remove unwanted mutations. They claim this

feature is unique to the Mutability Analyzer tool. [2]

Although their results were impressive, Porat et al realise that their algorithm only

operates statically – that is, it cannot detect discern the mutability of code that may

only exhibit mutation at run time. They intend to implement “smart annotations” to

allow the software to detect run time cases. However, no further detail is given on this

matter. Finally, the authors state the possibility of extending the system to deal with

“modular immutability analysis” – allowing the system combine the mutability results

of several components to discern the mutability of an entire system. [2]

For the paper “Using class decompilers to facilitate the security of Java applications ”,

Tam and Gupta conclude that their REVEAL prototype is the first system to combine

the decompiler and obfuscator in a single interoperating package. They note several

possible future extensions to their system: developing it into a centralised web-based

system for secure Java applications; implementing incremental decompiling to

increase efficiency and enhancement of the visualisations of the classes displayed to

the user. [3]

The three papers examined in this report add to Java security in three separate and

unique ways. Vitek and Bokowski attack the problem of untrusted code gaining

access to or use of sensitive code by adding new syntax to the Java programming

language itself. This method allows further compile time checking to be done which

can detect an occurrence of the problem manifesting itself. On the other hand, Porat et

al attack the same or similar problems by leaving the language syntax untouched, and

applying extra analysis to the code to detect situations where the problem of unwanted

mutation might occur. Porat et al’s solution, while more broad, requires human

analysis of the output from their algorithm to determine if it is indeed warning of a

potential security in every case.

It is the opinion of the author if this paper that although both [1] and [2] provide

possible solutions to the problem of potentially unwanted class/object/field access or

mutation, neither provides a sufficiently elegant or universal solution. Although by

adding extra language features to Java in [1] adds much more control over the access

to sensitive code, it does so at the cost of a considerable reduction of language

genericity in cases where the new features are used. The authors do note this

disadvantage – but perhaps it is more of a disadvantage than as is stated by them. One

of the leading principles in software engineering is code reuse. However, by using

these new features the programmer would be required to write custom “confined”

container classes for confined objects, thus violating the code reuse principle.

Although it may seem like a small price to pay, in a large piece of software many

extra containers may need to be written, thus dramatically increasing the amount of

supporting code and therefo re the amount of possible bugs. Also, due to the somewhat

complex nature of the language additions, developers may choose to ignore them

altogether (similar to the use – or lack of use – of “const” in C++).

The solution to the problem under consideration provided by [2] does not cause the

problems with genericity that [1] does, but introduces a new set. Although the

developer may not need to deal with the complexity of new language constructs, he

would be required to use and analyze the result produced by the Mutability Analyser

tool. In a large application, the output produced could be enormous, and furthermore,

a large proportion of it could be false negatives with respect to the specific security

issue of code encapsulation in question.

A possible solution to these problems could be to combine the techniques described in

both [1] and [2]. By implementing only a single new language construct, “confined”,

and removing the concept of anonymous methods, one could considerably reduce the

complexity of the language addition. However, by removing anonymous methods the

compiler would no longer be able to enforce confinement. To correct this, it is

proposed that the solution presenting in [2] could be incorporated into the compiler.

Given the additional information that references to certain classes should be confined

to a package, the algorithm in [2] might be able to be used to check the security of all

references that would have previously been done by using programmer specified

anonymous methods. Confinement breaches (not of the warp-core variety) could be

reported as warnings by the compiler.

Finally, it is the opinion of the author of this paper that the REVEAL application

presented in [3] could have advantages over using a traditional obfuscation system in

the field of disabling reverse engineering of Java bytecode. However, the authors [3]

did not consider any future extensions of their system involving decreasing the

amount of user input. Rather than enhance the visualisations of the decompiled

classes, it may be possible to eliminate them entirely and instead implement AI

algorithms which could converge on a system of obfuscation that could produce the

best results – without user intervention. For example, pattern matching between the

unobfuscated decompiled source code and the obfuscated source code could be

performed, and a measure of the difference between them could be developed. A

search of different combinations of obfuscators and settings could then be performed

to produce a result to maximize this difference measure. Such an automated iterative

procedure could produce an optimal obfuscation.

4 Conclusion

This report studied three papers with the common goal of extending the security

capabilities of the Java platform. Vitek and Bokowski proposed a syntactic extension

of the language to enhance the security of object references within packages. Porat et

al presented an algorithm and prototype application to analyze a Java application for

mutability of its classes and fields. Tam and Gupta presented an application to allow

the user-controlled iterative refinement of obfuscation.

All three papers were found to have significant advantages over current methods, as

well as disadvantages. The authors’ conclusions and suggestions for future work were

presented, and further independent conclusions and suggestions were put forth.

Finally, the author would like to acknowledge and thank Adam Johnson and Craig

Carpenter for their reading of this paper and helpful comments.

5 References

[1] J. Vitek, B. Bokowski, “Confined Types”, ACM SIGPLAN Notices,

Proceedings of the 1999 ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications. October 1999, Volume 34, Issue

10.

[2] S. Porat, M. Biberstein, L. Koved, B. Mendelson, “Automatic Detection of

Immutable Fields in Java”, http://www.cas.ibm.com/archives/2000/proceed/

cascon00/htm/english/abs/porat.htm, CASCON 2000.

[3] V. Tam, R.K. Gupta, “Using class decompilers to facilitate the security of

Java applications!”, Proceedings of the First International Conference on Web

Information Systems Engineering, 2000. Volume 1, pp 153 -158.

[4] Secure Internet Programming Group at Princeton University, “HotJava 1.0

Signature Bug”, http://www.cs.princeton.edu/sip/news/april29.html, 1997.

